Genetics

Question 1

You cross 2 snapdragon plants:

Pollen taken from a short plant with red flowers is used to fertilize a tall plant with white flowers.

short

tall (normal size)

All F1 (n=34) plants are tall with pink flowers.

By self-pollination F1 plants produce F2. Describe the phenotype of F2 plants: size, flower color, relative proportions of each phenotype.

Assume

- R locus determines the flower color
- T locus determines the size
- these 2 loci are not genetically linked

 F_1

Pink flowers in the F1 indicates incomplete dominance of red over white. There are only 2 sizes (tall and short): tall is completely dominant over short.

			tall (3/4)	tall red	3/16
	red	(1/4)_	short (1/4)	short red	1/16
			_tall (3/4)	tall pink 3/8	6/16
F1 x F1 _	pink	(1/2)	short (1/4)	short pink 1/8	2/16
			_tall (3/4)	tall white	3/16
white (1/4) _ short (1/4)				short white	1/16

Question 2:

A plant is allowed to self-pollinize. Planting the seeds obtained from this plant you observe

- 12 dwarf plants with white flowers
- 33 tall plants with white flowers
- 92 tall plants with red flowers
- 27 dwarf plants with red flower

The observation corresponds to the classical 9:3:3:1 Mendelian distribution

Dominance is complete because there is no pink flower, no intermediate size.

What is the genotype of the parental plant? _____ T/t C/c____

What is the phenotype of the parental plant? ___tall with red flowers ___

Locus T : T allele \rightarrow tall; t allele \rightarrow dwarf

Locus C : C allele \rightarrow red; c allele \rightarrow white

You let one of the 12 dwarf plants with white flowers self-pollinate. Describe the phenotype(s) of the progeny with the relative proportion for each phenotype:

Genotype of the dwarf plant with white flowers: t/t c/c Progeny: 100 % dwarf with white flowers

Question 3:

Adrian's karyotype is 47, XYY. The normal male genotype is 46, XY.

The chromosomal abnormality is due to

- a. a nondisjunction during meiosis I in Adrian's father
- b. a nondisjunction during meiosis II in Adrian's father
- c. a nondisjunction during meiosis I in Adrian's mother
- d. a nondisjunction during meiosis II in Adrian's mother

Adrian has 2 Y chromosomes instead of 1.

Adrian's mother does not have any Y chromosome; she cannot be the source of the abnormality.

The nondisjunction occurred in the paternal meiosis.

Meiosis I separates X from Y; so nondisjunction during meiosis I give XY sperm cells.

Only nondisjunction during meiosis II can give YY sperm cells.

Adrian mother transmitted X and Adrian's father transmitted YY